Physics 101: Learning Physical Object Properties from Unlabeled Videos

Jiajun Wu¹, Joseph J. Lim², Hongyi Zhang¹, Joshua B. Tenenbaum¹, William T. Freeman¹³ 1 Massachusetts Institute of Technology 2 Stanford University 3 Google Research

Overview

Goal: building a benchmark and a model to interpret physical scenes

Human infer rich information Contributions:

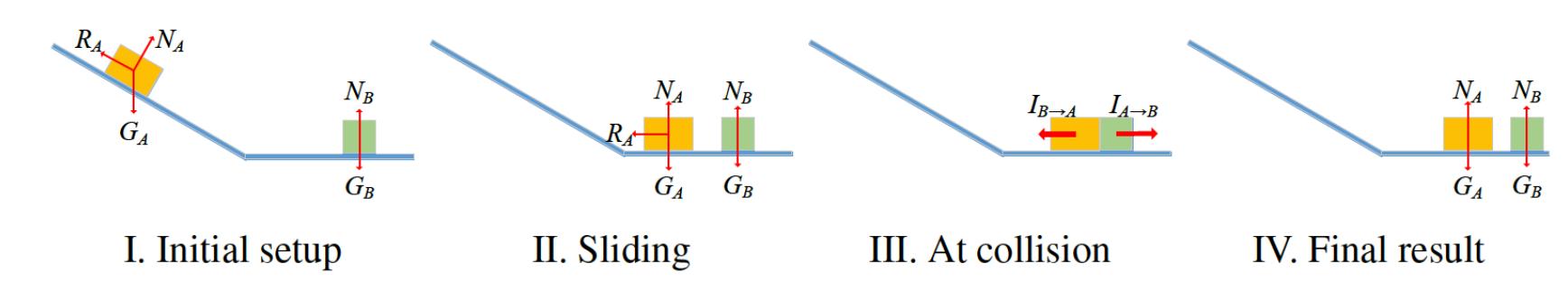
Observations:

from simple visual inputs.

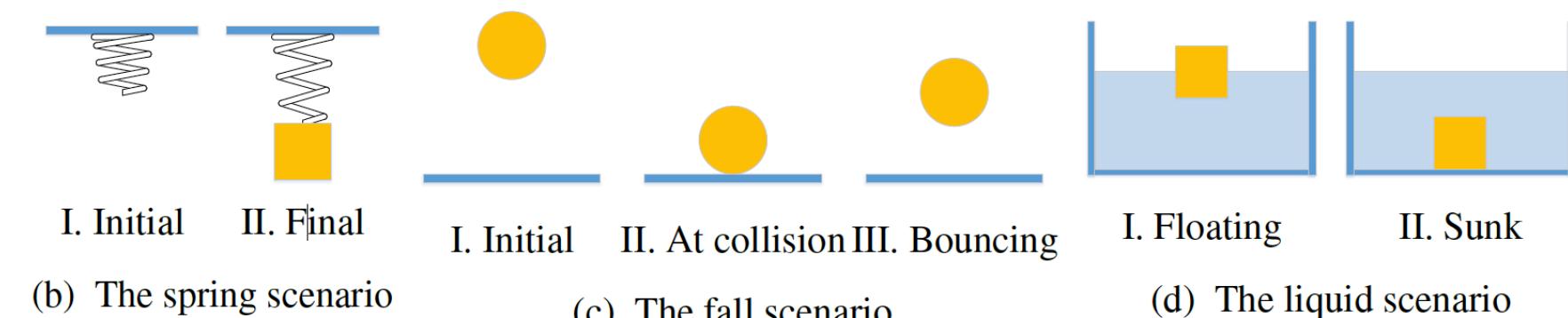
Infants learn intuition on

There is no benchmark for

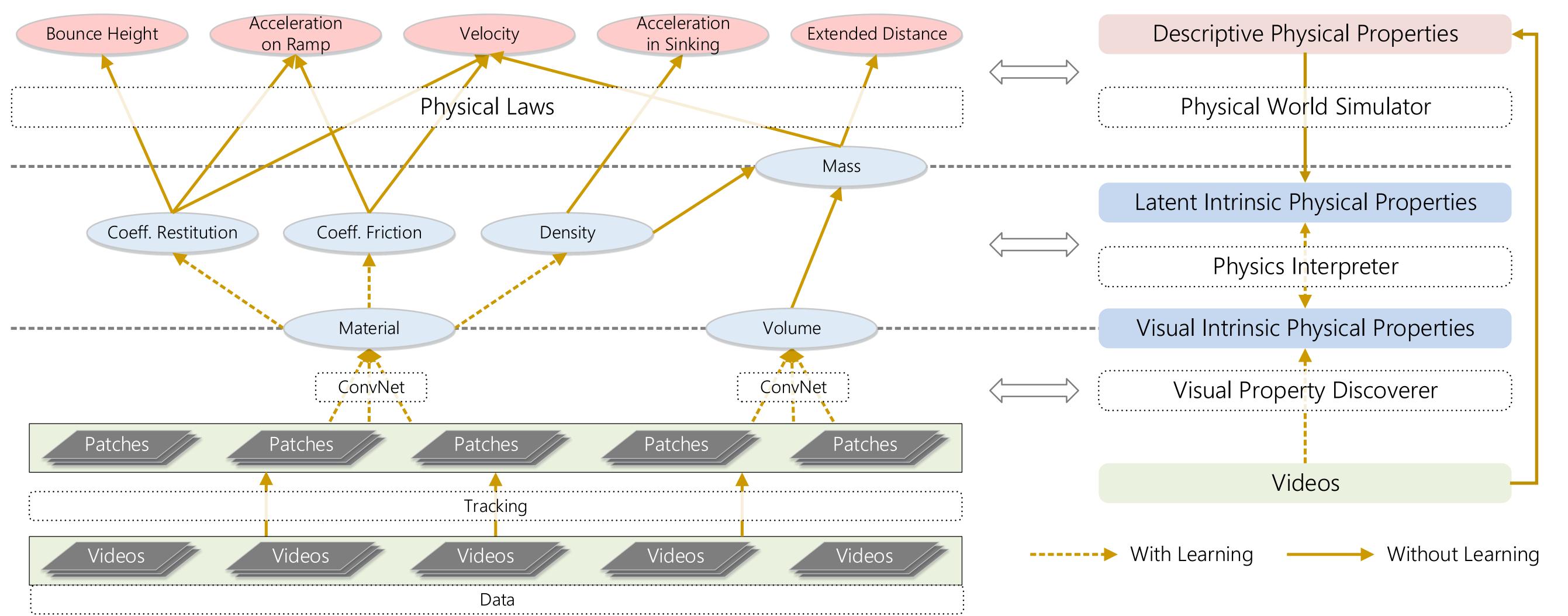
physics when they are young.


estimating physical properties.

- A benchmark for learning physical object properties from videos
- A novel, generally applicable model of physical scenes
- A neural net realization with good empirical performance


Physics 101: A Benchmark

101 Objects from 15 Categories


(a) The ramp scenario. Several physical properties will determine if object A will move, if it will reach to object B, and how far each object will move. Here, N, R, and G indicate a normal force, a friction force, and a gravity force, respectively.

4 Scenarios

(c) The fall scenario

Scene Modeling

Experiments

Methods	Mass			Density			Volume		
	Frame	Trial	Object	Frame	Trial	Object	Frame	Trial	Object
RGB (oracle) Depth (oracle)	0.79 0.67	0.72 0.51	0.67 0.33	0.83 0.69	0.74 0.61	0.65 0.49	0.77 0.40	0.67 0.41	0.61 0.33
RGB (spring) RGB (liquid) RGB (joint) Depth (joint)	0.40 N/A 0.52 0.33	0.35 N/A 0.32 0.27	0.20 N/A 0.26 0.25	N/A 0.33 0.33 0.29	N/A 0.27 0.34 0.23	N/A 0.30 0.33 0.17	N/A N/A 0.40 0.30	N/A N/A 0.37 0.20	N/A N/A 0.30 0.22
Uniform	0	0	0	0	0	0	0	0	0

Tasks	Methods	Frame	Trial	Object
Moving Distance	Ours (joint)	0.65	0.42	0.33
Moving Distance	CNN	0.63	0.39	0.21
Moving Distance	Uniform	0	0	0
Bounce Height	Ours (joint) Ours (transfer) CNN Uniform	0.35	0.31	0.23
Bounce Height		0.32	0.27	0.16
Bounce Height		0.36	0.25	0.15
Bounce Height		0	0	0
Float	Ours (joint)	0.94	0.87	0.84
Float	CNN	0.96	0.86	0.81
Float	Uniform	0.70	0.70	0.70

Inferring Descriptive Physical Properties

17,000+ Videos from 4 Viewpoints

Inferring Intrinsic Physical Properties